2019年3月29日,美国白宫发布新闻稿,公布新一版的《国家空间天气战略与行.动计划》,并称将以此为指导,进一步加强美国应对空间天气事件的能力。
▲美国《国家空间天气战略与行动计划》封面
在奥巴马执政期间,美国曾经制定过《国家空间天气战略》和《国家空间天气行动计划》。2016年,即将卸 任的奥巴马总统还签署了题为《协调努力为国家做好空间天气事件的准备》的总统行政命令,进一步强化美国联邦政府应对空间天气事件的目标和措施,以及各政府部门与机构的具体职责。
空间天气由太阳活动控制,太阳爆发产生的电磁波、高能粒子和高速等离子体经过行星际空间的传播到达地球,在地球磁层、电离层和中高层大气中诱发一系列剧烈变化,进而使空间天气变得恶劣。实际上,随着航天活动增多及其相关应用的推广普及,空间天气这种太空中的“阴晴雨雪”,对人类社会的正常运作产生的影响正与日俱增。同时,空间天气还能对电网造成破坏性影响,从而对社会运行所依赖的基础设施产生致命性的影响。
一、航天器的隐形杀手
1991年5月,上天仅半年的我国风云一号B卫星忽然开始失控翻转,在控制人员发现并采取措施时,卫星上的推进剂早已喷完,设计寿命为1年的卫星仅过了半年便不得不提前报废。而2003年10月至11月期间,日本的对地观测卫星ADEOS-2与地面失联后报废,远在火星的火星奥德赛号探测器上的一个科学载荷也意外停止工作,无法恢复,不少其他卫星也纷纷退出正常工作状态,转入安全模式避险。而造成这一切的,则是太阳高能粒子和地球附近的热等离子体。在空间天气状况恶劣的情况下,他们的出现将会非常频繁,对航天器安全产生威胁。
太阳高能粒子的来源主要有两个,一个是太阳上爆发的耀斑,这种太阳表面能量快速释放的现象所产生的高能粒子,往往只需要几十分钟就可以到达地球,而轰击地球的持续时间从几小时到几天不等。另一个则是太阳上喷发的高速等离子体团,空间天气学家们将其称为“日冕物质抛射”。在日冕物质抛射向地球传播的过程中,会推动挤压行星际空间中阻挡它前进的等离子体,产生与它一起向前传播的行星际激波。行星际激波为高能粒子的产生提供了加速器,当行星际激波到达地球后,就会引起地球附近的高能粒子通量增强。同时,日冕物质抛射能够诱发地磁暴,将热等离子体注入到地球磁层系统当中。
▲一次太阳耀斑事件
对于航天器上的微电子元器件来说,最为惧怕的是高能粒子中能量更高的那一部分。这些高能粒子能够穿透电子元件,造成数据错误、电路功能混乱或计算机整机瘫痪,引发卫星的异常或故障,甚至将卫星彻底摧毁。而能量相对低一些的高能粒子,则可以在航天器内部的电路板、导线等位置产生电荷堆积,阻碍航天器的正常工作。虽然热等离子体的单个粒子能量不及高能粒子,无法侵入航天器内部,但它们在航天器表面的堆积同样会引发表面充放电效应,干扰航天器正常运行甚至造成损伤。
对于在太空中工作的航天员,高能粒子也是他们生命健康的严重威胁。如果耀斑和日冕物质抛射等太阳风暴影响地球期间,航天员不按照当时的高能粒子通量水平采取审慎的防护措施,他们就有可能受到剂量超标的辐射。2003年10月~11月连续太阳风暴爆发期间,国际空间站的航天员们就转移到了防护性能更好的舱段中躲避危险。
二、空间站提前坠落的元凶
地球大气的密度随着高度的增加而迅速减小,在LEO轨道几百公里的高度上已经相当稀薄。然而,对于高速 运动的航天器来说,这里的大气阻力仍然是不可忽视的。如果不主动使用发动机进行轨道维持,航天器的轨道就会不 断衰减,轨道高度越来越低,最终陨落。太阳耀斑产生的电磁辐射,和日冕物质抛射诱发的地磁暴对中高层大气的加热,都会使LEO轨道上的大气密度比正常情况下有所增加,航天器在此影响下必须进行额外的轨道维持,否则就可能遭遇不测。
▲天空实验室
美国“天空实验室”提前坠落就是这一效应最典型的案例。天空实验室是美国的第一代空间实验室。按照美国宇航局(NASA)的计划,这个1973年发射的空间站本应该工作到上世纪八十年代,与航天飞机一同开展空间试验。然而,NASA 在七十年代中期对太阳活动的预报出现了偏差,又对美国国家海洋和大气管理局(NOAA)等与它平行的政府部门的警告充耳不闻。在阿波罗飞船最后一次造访天空实验室时,没有对天空实验室进行足够的轨道维持。在愈发频繁的太阳风暴吹袭下,地磁暴不断发生,天空实验室轨道上的高层大气密度增大使得其轨道失控式的衰减。同时,美国的载人航天器正处在青黄不接的当口:航天飞机的研发测试尚未完成,而阿波罗飞船已经退役,美国无法发射飞船救援天空实验室,使得其最终在1979年提前陨落。
此外,空间天气产生的影响,还会使得中高层大气的密度变得更加难以预测。对于交会对接这类需要进行轨道精准控制的操作,在大气密度的实际值与预测值偏差较大的情况下,飞行器的实际飞行轨迹与预测的轨道就可能出现较大偏差,需要耗费更长的时间来不断修正轨道,才能完成对接。
三、卫星定位与无线电通信的干扰源
在距离地面60~1000公里的区域中,存在着由带电粒子组成的电离层。无线电信号能否穿过电离层、穿过电离层时信号参数发生的变化,都与电离层的性质有关。例如,短波信号能够跨越大洲传播,利用的就是电离层对这个频段无线电信号的反射;而地面与卫星 通信时,则必须使用能够穿透电离层的高频信号。电离层性质,主要受到太阳活动的影响。一旦有耀斑发生,电离层的性质在耀斑发生的同时就会马上产生变化,而日冕物质抛射吹袭地球时,引起的地磁暴同样会诱发电离层性质的变化。
▲太阳风暴吹拂地球磁场形成的磁层
地面设备在接收北斗、GPS等卫星定位系统所发射的定位信号,并由此推算位置信息时,已经考虑了电离层在一般情况下的性质。而一旦电离层的性质由于空间天气原因发生变化,定位信号的实际变化情况就会和设备中预置情 况产生差异,定位设备的定位精度就会因此下降。对于日常生活中的手机定位,由于定位精度的要求不高且能够借助手机基台的位置进行较差定位,因此不会明显的感受到空间天气的影响。然而,对于定向钻井等野外高精度作业和借助GPS实现的新一代航空导航与仪表降落系统来说,电离层变化因此的定位精度降低足以干扰他们的正常工作。
2001年,搜救中美撞机事件的我方部队的无线电通信忽然中断两个小时,给搜救工作造成了一定影响。后经专家分析,造成这一问题的原因就是电离层因太阳风暴而发生的变化。虽然远距离无线电传输在一般人的日常生活中已经很难接触到,但在军事和一些其他 专业领域中,这种受电离层影响的通信方式仍然是不可替代的。对于应用远距离无线电通信的部门来说,空间天气状况是他们必须关心的信息。
四、摧毁高压电网的幕后黑手
在越南战争中,美军曾经施放了大量水雷,用以封锁越南的港口。1967年的一天,部署在越南防城港附近海域中的四十颗美军水雷,忽然在没有船只经过的情况下发生自爆,爆炸产生的连环效应最终引爆了4000多颗水雷。
▲不同形态的极光
这些水雷的爆炸并不是越南特工的“杰作”,而是源于日冕物质抛射引发的地球磁场变化。日冕物质抛射中裹挟的太阳磁场,在方向合适时能够“剪 断”地球磁场的磁力线,将等离子体注入到地球磁场系统中,并将地球磁场的磁力线由朝向太阳的一侧拉扯到背向太阳的一侧。在这个过程中,整个地球磁场都会发生剧烈的变化,空间天气学家们将这种现象称为“地磁暴”。美军的水雷利用船只经过时引起的磁场变化探测敌方船只,一旦磁场变化的速度超过某一阈值便会将自身引爆。然而,当地磁暴发生时,水雷将地磁暴引起的磁场变化误认为是船只经过的磁场变化,因而引爆。
▲使用各个波段对一次日冕物质抛射的联合观测
地磁暴对当代社会更大的威胁, 在于其可能对电网产生的破坏。地磁暴引起的磁场的剧烈变化会在长距离高压 输电线中产生强烈地磁感应电流,引起 电网供电不稳或彻底崩溃。1989年3月的地磁暴使得加拿大魁北克地区的电 网瘫痪,数百万人在寒冷中度过了没有 电能供应的夜晚。如果更加强烈的太阳风暴来袭,烧毁电网大型核心变压器, 电网将就会发生长时间的瘫痪。这是因为这些大型核心变压器多为特别定制产品,没有现成的货架备份可供替换,一 旦损坏,短时间内无法找到备件替换。电能是现代社会运作的基本条件,一旦失去供电,整个社会的运转便会陷入停滞。据风险评估研究得出的结论,一次超强太阳风暴引起的大停电,将会给北美地区带来数万亿美元的巨大损失。
▲极光是太阳风暴给地球的馈赠,然而强烈的极光活动也意味着电网风险的增加
▲魁北克大停电事故中被烧毁的变压器
虽然特朗普上台后对奥巴马任职期间的政策多采取消极态度,但在空间天气这一问题上却延续了奥巴马政府所形成的既定方针。在3月29日白宫发布的新闻稿中称,特朗普总统为重振美 国在太空中的领导地位“采取了果断行动”,发布的新版的《国家空间天气战 略与行动计划》是实现特朗普目标的举措之一。在这份计划中,美国国家科技委员会提出了“空间天气有备国家”(space weather-ready nation)的概念,为现阶段国家层面应对空间天气的行动 指明了三个重点方向:一是要针对国家安全、国土安全(即美国本土安全)和商业设施与运作中容易受空间天气影响的部分,加强其自身的防护能力;二是发展及时而准确的空间天气监测与预报能力,为全社会应对空间天气事件提供关键信息与指导;三是制定空间天气事 件后的灾后恢复方案,使遭受不可抗的空间天气灾害后,相关部门能够按照预 先研究论证过的预案和行动步骤,有条不紊的应对灾害造成的损害。如果该计 划中提出的方案都能实施落地的话,美国有望在该领域继续保持其先进地位。
本文原载于《太空探索》2019年第12期,作者为李会超